

Experimental and numerical study of an oCVD process for the deposition of PEDOT thin films

M. Mirabedin^{1,2}, A. Pezzoli^{1,2}, H. Vergnes¹, C. Vahlas², N. Causse², B. Caussat¹*

1: Chemical Engineering Laboratory (LGC), Toulouse, France
2: Interuniversity Materials Research and Engineering Center (CIRIMAT), Toulouse, France-seyedmilad.mirabedin@ensiacet.fr brigitte.caussat@ensiacet.fr

EuroCVD 22-Baltic ALD 16 | 2019 25 June 2019, Luxembourg

State-of-the-art about PEDOT thin films

PEDOT polymer
Numerous applications in organic
devices

Conductivity: 0.1 to 5000 S/cm

Deposition processes of PEDOT film:

- Spin-coating (aqueous suspension)
- Sequential dip-coating (liquid solution)
- Electrochemical polymerization (electrolyte)

Drawbacks:

- □ High contamination with solvent residuals
- ☐ Low diffusivity in substrates with complex 3D structure
- Solvent-substrate compatibility
- ☐ Conductive substrate (Electrochemical polymerization)

A new process by Gleason's group since 2007

Oxidative chemical vapor deposition (oCVD)

Oxidative chemical vapor deposition (oCVD)

Advantages:

- No contamination due to solvent
- High diffusion in gas phase under vacuum
 - Uniform concentration distribution
 - Uniform thickness
- Working at ambient temperature
 - Suitable for temperature-sensitive substrates
- Depositing on any substrate
 - Porous materials, fibers, 3D objects, paper, membrane, textile...

However:

- The links between process parameters and film properties are not well understood.
- A post-deposition rinsing is necessary to remove by-products and unreacted materials to improve conductivity.

Dedicated studies are necessary targeting process optimization for the production of highly conductive PEDOT

Aim of the project

Combine experimental and numerical studies to correlate film properties to deposition conditions

Schematic view of the oCVD reactor

Deposition conditions

- Deposition duration: 30 min
- Total pressure: 100 mTorr
- Substrate temperature kept at 20°C
- Constant EDOT flow rate through a jar kept at 70°C
- Constant Nitrogen flow rate Reastatreatment afteurry EDOT vapor

Rinsing in MeOH and drying in air

Substrate: Silicon wafers with diameter of 10 cm

Studying the effect of the FeCl₃/EDOT ratio How to change this ratio? Constant EDOT flow rate, varying FeCl₃ flow rate

FeCl ₃ crucible temperature	FeCl ₃ /EDOT inlet molar ratio
175°C	1.75
200°C	2.33
240°C	7.53

Let us go to the results...

Influence of the inlet FeCl₃/EDOT ratio on vibrational spectrometry response of the films

PEDOT polymer backbone (Doped with Chlorine)

- The deposited films are PEDOT
- Hygroscopic behavior of FeCl₃ or presence of iron oxides
- Increasing the FeCl₃/EDOT ratio:
- → Higher intensity of OH peaks
- Lower intensity of asymmetric stretching of C=C inter-ring bonds, which could decrease the conductivity

FTIR spectra for the three FeCl₃/EDOT ratios

Influence of the inlet FeCl₃/EDOT ratio on local film thickness (profilometry)

Full points: before rinsing, empty points: after rinsing

Thickness measurement points on the silicon wafer

Uniform thickness on 10 cm silicon wafers before and after rinsing

Influence of the inlet FeCl₃/EDOT ratio on average thickness (profilometry) and film weight

- Seemingly linear increase of the thickness with the FeCl₃/EDOT ratio.
- Rinsing with MeOH does not change the thickness
- Non-linear increase for the film weight with the FeCl₃/EDOT ratio, probably due to changes in film composition or porosity.

Influence of the inlet FeCl₃/EDOT ratio on the film apparent density (profilometry and deposit weight)

$$\rho = \frac{\text{deposit mass}}{\text{film thickness} \times \text{coated area}}$$

Significant change apparent in density for the highest FeCl₃/EDOT ratio

→ As the three films contain PEDOT, the different evolution for thickness and deposited mass probably comes from film porosity variation.

Influence of the inlet FeCl₃/EDOT ratio on the film morphology before rinsing (SEM)

- Porous films
- Two different morphologies depending on the FeCl₃/EDOT ratio
- For the highest ratio: deposit morphology close to that of sublimated FeCl₃
- Zones of different compositions measured by EDX

Influence of the inlet FeCl₃/EDOT ratio on the film morphology (SEM) before and after rinsing

- Bright zones disappeared after rinsing
- Rinsing in MeOH removes impurities

Influence of the inlet FeCl₃/EDOT ratio on the film electrical conductivity (4-point probe)

One order of magnitude decrease

- Decrease of the conductivity when the FeCl₃/EDOT increases.
 - Conjugation length decreases
- Rinsing with MeOH improves the conductivity slightly.

Im and Gleason, (2007) 3 sccm EDOT and 320°C for FeCl₃

at $T_{sub} = 20$ °C: 0.05 S/cm

Simulation results Vertical cross view of the reactor

Uniform concentration all over the reactor for both EDOT and FeCl₃, due to high gas diffusion coefficients

> In accordance with experimental observation of uniform film thickness

Simulation results Influence of the inlet FeCl₃/EDOT ratio on flux near the substrate (Preliminary simulation results)

Inlet FeCl₃/EDOT ratio	Experimental deposition rate/Calculated total reactant flux (%)
1.75	1.07
2.33	1.33
7.53	1.20

Only one percent of the flux of reactants reaching the substrate is responsible for the deposit → strong kinetic limitation.

Conclusions

- Deposition of PEDOT thin film of uniform thickness on 10 cm Si substrates at ambient temperature
- Sending more FeCl₃ into the reactor:
 - Increases the film thickness
 - Changes in a coherent way the film morphology, porosity and composition
 - Decrease the amounts of C=C bonds and logically the conductivity
- Rinsing with MeOH
 - Slightly improves the conductivity
- Simulation results
 - Uniform concentration and weak contribution of reactants to the deposition
 - Strong kinetic limitation

The FeCl₃/EDOT ratio and more largely all the deposition parameters must be controlled to produce highly conductive PEDOT.

Perspectives

Optimize all contributing parameters in the deposition process to produce PEDOT with the best physical properties (in progress)

Measure in real time the deposition rate with an *in situ* quartz microbalance (in progress)

Develop apparent kinetic laws for reaction rates to be implemented in the reactor model (in progress)

Study films on complex substrates for applications in organic electronics

Thank you!

Our proposition based on other polymers:

With 0.15 as the ratio of Cl/S, we are considering that for each 7 EDOT units, there is one Cl with negative charge. Therefore, the $M_w=2+(0.15*35+140)=147.25$

Proposed polymerization mechanism in the literature for PEDOT by oCVD [6]

Polymerization

(3): Deprotonation

Monomer: EDOT 97% (Sigma-Aldrich) Colorless or yellow liquid

Proposed polymerization mechanism in the literature for PEDOT by oCVD [6]

Doping

(4): Chlorine doping of polymer backbone

- Presence of Chlorine in the backbone
- Presence of C=C inter-ring bond in the backbone (conjugation and conductivity)
- Removal of C-H bond in the thiophene ring due to the polymerization

Influence of inlet FeCl₃/EDOT ratio

Thickness measurement procedure on the substrate

CONDUCTIVE POLYMERS

Why conductive polymers and not metals?

Polymeric properties Optical transparency **Tunable electrical conductivity** Combine Low density Corrosion resistance Flexibility Lead to several applications in organic devices: Flexible, lightweight electrodes in supercapacitors Hydrophobic surfaces Conductive ink for printing P-layer in solar cells OB THE CAR LUNGTO Conductive adhesives **Functional** textiles

Theory:

Electrical conductivity in polymers comes from the presence of conjugated bond structure through doping that permits piorbital overlap along the alternating double and single-bonds in the polymer backbone.

Q: How to make the polymen conjugated (conductive)?

A: By creating bond conjugation through doping (two syngs) bond

Double bond

- **p-doping**: Oxidation and creating a positive charge in the molecule (treating with Lewis acids like FeCl₃or₀l₂)

n-doping: Reduction and creating a negative charge in the molecule (treating with Lewis bases like Na@H)

How to deposit a layer of PEDOT on a surface?

Influence of the inlet FeCl₃/EDOT ratio on flux near substrate (Preliminary simulation results)

	Simulations by FLUENT		Experiments		
Inlet FeCl ₃ /EDOT ratio	Flux near (kg/t		Sum of EDOT+ FeCl ₃ fluxes near substrate (kg/m ² .s)	Experimental deposition rate (kg/m².s)	Experimental deposition rate/Calculate d total reactant flux (%)
	FeCl₃	EDOT			
1.75	Increases with Constant the ratio	1.17E-06	1.25E-08	1.07	
2.33		n Constant	1.89E-06	2.52E-08	1.33
7.53			3.30E-06	3.97E-08	1.20

- Only one percent of the flux of reactants reaching the substrate is responsible for the deposit \rightarrow strong kinetic limitation.
- The deposition rate is clearly dependent of the FeCl₃ flux toward the substrate (limiting reactant).

Vertical cross view of the reactor (Simulation results without considering surface reaction)

Ratio=7.53

FeCl₃ concentration distribution

Less than 3% variation over substrate

Uniform concentration all over the reactor for both EDOT and FeCl₃, due to high diffusion coefficients

In accordance with experimental observation of uniform film thickness

