

Outline

How spectator adsorbates affect surface reactivity: computing the cooperative effect by automated enumeration of reaction pathways

- What is the cooperative effect?
- Cluster model and framework for enumeration
- Enumeration of structures for H₂O adsorption
- Next step: reactions of adsorbed H₂O

DFT calculations of H₂O adsorption to methylated surface during ALD of Al₂O₃

No chemisorption

of single H₂O to single Al(CH₃)

M. Shirazi & S. D. Elliott, Nanoscale, 7, 6311-6318 (2015)

DFT calculations of H₂O adsorption to methylated surface during ALD of Al₂O₃

No chemisorption of single H₂O to single Al(CH₃)

M. Shirazi & S. D. Elliott, Nanoscale, 7, 6311-6318 (2015)

DFT calculations of H₂O adsorption to methylated surface during ALD of Al₂O₃

No chemisorption of single H₂O to single Al(CH₃)

What is limiting low-temperature atomic layer deposition of Al₂O₃? A vibrational sum-frequency generation study

V. Vandalon^{a)} and W. M. M. Kessels^{a)}
Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven,
The Netherlands

FIG. 3. Relative –CH₃ surface coverage θ , extracted from the BB-SFG spectra as a function of TMA and H₂O exposure for various temperatures. The solid lines represent fits to the data in order to extract information about the reaction kinetics.

Incomplete elimination of precursor ligands during atomic layer deposition of zinc-oxide, tin-oxide, and zinc-tin-oxide

Adriaan J. M. Mackus, Callisto MacIsaac, Woo-Hee Kim, and Stacey F. Bent^{a)} Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA

 $Zn(C_2H_5)_2+H_2O\rightarrow ZnO$ Ligand CH detected by FTIR at end of H_2O pulse relative to end of Zn pulse:

Open questions:

- Is the effect specific to 4-coordinate Al, or does it occur in other Al coordination environments as well?
- Are neighbouring adsorbates exerting a steric effect, or also electronic?
- Kinetics only, or also thermodynamics?

Challenges for simulation

Rather than modelling	We must now consider
isolated molecules	many configurations of co- adsorbates
in small simulation cells	in large simulation cells
on flat smooth crystalline surfaces	on more realistic 3D nanostructured surface regions
yielding one mechanism, one reaction pathway, one activation energy.	potentially producing as many activation energies and pathways as surface geometries that can be imagined.

Automatic enumeration of surface geometries gives a route towards systematically investigating such complex systems, exploiting the power of computational chemistry.

Model of Al₂O₃ surface

Monoclinic θ -Al₂O₃ C21/m1 (#12) as model of amorphous as-deposited film.

Selected AlO-terminated (1 0 0) surface based on computed surface energies:

- 0.6 J/m² for AIO-terminated (1 0 0)
- 1.1 J/m² for O-terminated (1 0 0)
- 1.4 J/m² for AlO-terminated (0 0 1)
- 2.3 J/m² for O-terminated (0 0 1)

Model of Al₂O₃ surface

Model of Al₂O₃ surface

If both saturating coverages are around 6/nm² at end of each pulse

→ total by-product desorbing is 12 CH₄/nm²/cycle

 \rightarrow total deposition is 2 Al₂O₃/nm²/cycle = 0.33 ML/cycle = 1 Å/cycle.

A model within the chemical space of ALD

A model within the chemical space of ALD

A model within the chemical space of ALD

APPROACH:

- At each surface concentration, systematically enumerate all symmetrydistinct isomers:
 - 24 isomers across range of methyl concentrations
 - 24 isomers across range of hydroxyl coverages.
- Optimize those structures at DFT level (B3LYP-D3/LACVP*) and select valid structures.
- Add H₂O adsorbate to chosen site and reoptimize with DFT.
- Optimizations each take 50-70 cpu-hours; total time 110 cpu-days.

→ adsorption site for H₂O is already occupied

Predominant thermal effect is entropy of free H₂O molecule.

average ΔH_{ads} =-106±14 kJ/mol

constant $T\Delta S_{H2O}$ =-89.4 kJ/mol

average *T*∆*S*_{surf}=+14±6 kJ/mol

average ΔG_{ads} =-30±20 kJ/mol

 $\Delta H_{\rm ads}$ =-128.7 kJ/mol

 $T\Delta S_{\rm H2O}$ =-89.4 kJ/mol

 $T\Delta S_{\text{surf}}$ =+22.8 kJ/mol

 ΔG_{ads} =-62.2 kJ/mol

Entropy (=surface motion) plays a role here, but less than enthalpy (=bonding).

CH₃/H-transfer and elimination of CH₄

CH₃/H-transfer and elimination of CH₄

CH₃/H-transfer and elimination of CH₄

- About 5x more concentrations to consider in chemical space.
- Enumeration of isomers at each concentration, as before.
- Multiple reaction paths for H-transfer are possible for each isomer.
- Finding transition states takes more cpu time and is less reliable than finding minima.

i.e. MUCH MORE DEMANDING CALCULATIONS

Conclusions about automated enumeration

Chemical space is big!

- Systematic enumeration over structural isomers is achievable.
 - However, not entirely automatic: must check for exotic/outlier chemistries, as they may skew results.
- Enumeration over all possible reaction pathways between isomers is currently a challenge.
- CPU time required for quantum mechanical calculations remains a significant limiting factor.

Conclusions about cooperative effect

- Molecular adsorption of H₂O onto a 5-coordinate surface Al site is computed to be barrierless in nearly all cases studied.
- Little evidence of cooperative effect on thermodynamics:
 - Onto methylated surface, average ΔG_{ads} =-30±20 kJ/mol at 200°C.
 - Onto hydroxylated surface, average ΔG_{ads} =-50±10 kJ/mol at 200°C.

except for some individual cases outside these ranges, which merit more detailed study.

 Contribution from 3D-flexibility of the surface (in terms of both enthalpy and entropy) can be effectively treated with cluster model.

SCHRÖDINGER

Transforming drug discovery and materials research