

Pulsed CVD/ALD of Amorphous GeSe for Application as OTS Selector

Ali Haider[®], Shaoren Deng^{*}, Elie Schapmans[®], Michael Givens[®], Jan Willem Maes^{*}, Karl Opsomer[®], Christophe Detavernier[©], Jean-Marc Girard[®], Sven van Elshocht[®], Matty Caymax[®]

OIMEC Belgium, *ASM Belgium, ASM microchemistry, TU Ghent, Air Liquide France

MEMORY AT IMEC: SUMMARY Device for Machine Learning Legend On-chip STT-MRAM + SOT MRAM (embedded) Register MRAM selector STT-MRAM STT-MRAM e SRAM Emerging/MIM 3D DRAM / OXRAM/CBRAM ache L3/eDRAM MIMCAP IGZO select Ferro **NOR** DRAM 3D SCM (RRAM/PCM +selector) transistor **SCM** Flash 3D FeFET Off-chip **NAND** Flash Separate (stand-3D NAND HDD storage offering Chalcogenide materials alone) Archival DNA-inspired growth Memory insite

2

SELECTOR DEVICE

CROSSBAR MEMORY AND SELECTOR DEVICES

- Dense memory arrays cross bar memory
- 2 terminal memory devices → current sneak path problem
- Need for a selector device to select a specific memory cell
 - Threshold switch
 - Non conductive for V<V_{th}, conductive for V>V_{th}
 - Amorphous Ge Chalcogenides showing Ovonic Threshold
 Switching (OTS)

Materials containing S, Se, or Te

MOTIVATION TO GROW ALD GeSe

- 1. 3D conformality for selector
- 2. Amorphous phase, thermally stable throughout full processing cycle (up to 400 °C)
- 3. Uniform films (300 mm wafer), thickness (10-20 nm), and composition control

innec

ALD OF GeTe BY UNI OF HELSINKI

$$MCl_x + x(Et_3Si)_2Te \longrightarrow MTe_x + xEt_3SiCI$$
 Formation of alkylsilylchloride drives the reaction

^IGeCl₂.stabilizer +
$$((C_2H_5)_3Si)_2$$
Te $\xrightarrow{90 \, ^{\circ}C}$ GeTe + $2(C_2H_5)_3Si$ Cl + $C_4H_8O_2$

What we are trying at IMEC

Te → Se

Experimental

Ge precursors	Se precursors
Stabilized germanium dichloride. (GeCl ₂ .stabilizer)	Bis(trimethylsilyl)selenide ((CH ₃) ₃ Si) ₂ Se (TMS) ₂ Se
	$Bis(triethylsilyl)selenide \; ((C_2H_5)_3Si)_2Se \; (TES)_2Se \;$

ASM POLYGON 2 Pulsar platform

1. Film growth in ASM Pulsar 300 mm cross flow reactor (various reactor conditions)

Fluorescent X-rays

- 2. Total reflection X-ray fluorescence (TXRF) to study precursor chemisorption
 - Trace element analysis
 - Quantitative
 - Whole wafer (300 mm) analysis
- 3. Material characterization: SEM, TEM, ERD, EDX, XRR, Temp programmed XRD...

X-ray source

- Ge and Se precursor chemisorption studies by TXRF
- GPC trends with processing conditions
- GeSe properties

- Ge and Se precursor chemisorption studies by TXRF
- GPC trends with processing conditions
- GeSe properties

8

TXRF measurements: Precursor Chemisorption Studies

9

Stabilized GeCl₂Chemisorption

GeCl₂ chemisorption on SiO_x is slow, limited by precursor supply/slower injection

~50 sec needed for Ge saturation on 300 mm wafer

Se precursor chemisorption

Se doesn't chemisorb on SiO_X

Se chemisorbs on GeCl_X: Cl sites needed for precursor ligands exchange reaction

• Saturation coverage is ~3.5E+13A/cm2 (only ~15% of Ge sites)

Se CONCENTRATION AT DIFFERENT REACTOR TEMPERATURES

Se CONC DECREASE AT HIGHER REACTOR TEMPERATURE

Se chemisorption becomes faster with (TMS)₂Se on GeCl_X/Si

~100 sec needed for saturation vs 400 sec for previous precursor

• Saturation coverage with (TMS)₂Se is ~1.1E+14/cm2 (~75 % of Ge sites are covered)

Ge and Se precursor chemisorption studies by TXRF

- GPC trends with processing conditions
- GeSe properties

Limited by Ge precursor delivery
Slow kinetics
Processing conditions
Best precursor combination

- Ge and Se precursor chemisorption studies by TXRF
- GPC trends with processing conditions
- GeSe properties

18

GPC is higher in (I) pulsed CVD regime, (2) with higher GeCl₂ delivery, and (3) low reactor temp

- Ge and Se precursor chemisorption studies by TXRF
- GPC trends with processing conditions
- GeSe properties

GeSe is conformal, amorphous, uniform, smooth and near stoichiometric.

EDX analysis		
Element	at.%	
Chlorine	4.1	
Germanium	49.20	
Selenium	46.71	

Ge ₅₁ Se ₄₉ if normalized to 100 atom% GeSe	
C, O ignored (stemming from specimen storage	
at air)	

ERD depth analysis		
Element	at.%	
Hydrogen	~5	
Carbon	~5	

5 nm

Thermal Stability Data by In-situ Temperature Programmed XRD

SUMMARY AND CONCLUSION

- 1. TXRF studies: Ge chemisorption limited by Ge precursor delivery, overall slow kinetics
- 2. Key parameters to obtain higher GeSe GPC
 - Pulsed CVD regime

umec

- Higher delivery of GeCl₂ precursor
- Lower reactor temperature
- 3. GeSe is conformal and amorphous.

OUTLOOK

- Benchmarking PVD GeSe vs ALD GeSe
- Optimization of GeSe process
 - Controlling the impurities in GeSe

mec

embracing a better life

