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• CO2 emissions from fossil fuels is the primary cause of Global Warming

• Current CO2 levels in the atmosphere are the highest they have been 

for more than five million years

• The EU has set the target of cutting its emissions by at least 80% 

compared to 1990 levels to prevent Global Warming

The CO2 problem



• Sunlight is our largest energy source

• Although solar cells can generate 

electricity, they have limitations

• Photosynthesis is nature’s example of how 

solar energy can be stored in chemical 

bonds, and has inspired artificial strategies

• The most promising approach is to split 

water using semiconductors to produce 

H2; which is a versatile fuel

Solar water splitting

D. Gust, MRS Bulletin, 2008



• A semiconductor can split water when photo-excited if:

I. The conduction band is more negative than proton reduction

II. The valence band is more positive than water oxidation

• Highest efficiencies found in Si or III-V semiconductors, but require 

passivation as they are unstable in water

• Metal oxide semiconductors are less efficient but more stable, and 

can be grown using low cost, up-scalable methods

Metal oxide semiconductors



• All reactions were carried out at atmospheric pressure using a horizontal 
flow, cold-wall reactor

• The precursors, used to form WO3 and BiVO4, were dissolved in a volatile 
solvent and transported into the reactor as an aerosol

Chemical vapour deposition (CVD)



WO3: synthesis

• WO3 grown by an aerosol-assisted CVD method using a solution of 
W(CO)6 (11.4 mM) in an acetone: methanol (2:1) mixture

• By controlling the deposition temperature, we could either grow:
I. Flat WO3 coatings at 325 ◦C
II. Nanoneedle WO3 at 375 ◦C

• A series of samples were made with varying thicknesses of flat and/ or 
nanoneedle layers:

Kafizas et al., J. Phys. Chem. C 2017, 121, 5983−5993



WO3: physical characterisation

• SEM

F ~500 nm NN ~4.2 µm
F ~300 nm, 

NN ~4.2 µm
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WO3: physical characterisation

• SEM

F ~300 nm, 

NN ~2.3 µm

F ~300 nm, 

NN ~4.2 µm

F ~300 nm, 

NN ~6.2 µm
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WO3: physical characterisation

• XRD
 All samples adopted the WO3 monoclinic crystal structure
 Nanoneedles were highly oriented in the (002) crystal plane
 Thicker flat films showed similar preferred orientation to nanoneedles, 

but adopted a dense, flat nanostructure



WO3: physical characterisation

• UV-visible absorption spectroscopy
 Bandgap decreases with an increase in film thickness or nanoneedle length
 May be physically related to changes in preferred orientation



WO3: water splitting function

• Photoelectrochemistry and incident photon-to-current efficiency (IPCE)
 Examined in a 3-electrode photoelectrochemical cell (0.5 M H2SO4, pH ~1)
 Longer nanoneedles show stronger visible light activity



• Predicting solar efficiency using our IPCEs
 IPCEs multiplied by the solar spectrum to predict photocurrent
 Optimum activity observed at F ~300 nm, NN ~4.6 µm

WO3: water splitting function



WO3/ BiVO4: synthesis

• BiVO4 grown using an aerosol-assisted CVD method using a solution of 
VO(acac)2 (5.3 mM) and Bi(Ph)3 (5.3 mM) in an acetone: methanol (3:1) 
mixture

• Range of BiVO4 thickness examined individually, and coated onto our 
best performing WO3 sample (F ~300 nm, NN ~4.6 µm)



WO3/ BiVO4: characterisation

• XRD showed the formation of the monoclinic Scheelite BiVO4 structure 
on monoclinic WO3

• SEM images reveal the conformal coating of WO3 nanorods with BiVO4

2Θ(°)



WO3/ BiVO4: water splitting activity

• Incident photon-to-current efficiency (IPCE)
 Examined in a 3-electrode photoelectrochemical cell at 1.23 VRHE

(0.5 M H2SO4, pH ~1) or 0.1 M phosphate buffer, pH ~7)



Kafizas et al., Sustainable Energy Fuels, 2019,3, 264

WO3/ BiVO4: computational modelling

• Band alignment at the interface differs from bulk measurements

• Strong hybridisation of common oxygen anion causes a flat valence band



• Transient absorption spectroscopy (TAS)

WO3/ BiVO4: charge carrier dynamics



• Transient absorption spectroscopy (TAS)

• WO3/ BiVO4 heterojunction shows a higher hole signal at early 
timescales, due to enhanced charge carrier separation

WO3/ BiVO4: charge carrier dynamics

Kafizas et al., Chem. Sci., 2019, 10, 2643–2652

BiVO4 WO3/ BiVO4



Conclusions

• Renewable H2 fuel can be produced using sunlight, and used as a 

medium for storing energy, heating or transport fuel

• Inorganic materials show the highest efficiencies for producing 

H2 fuel using sunlight

• WO3/ BiVO4

• Nanostructured WO3 was grown by CVD and optimised

• Forming a heterojunction with BiVO4 results in a 3 fold 

improvement in water splitting activity

• My research focuses on improving the economic viability of 

producing water splitting devices using CVD
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• Why are nanoneedle structures better than flat?
 Flat samples between 200 – 800 nm in thickness and nanoneedles between 1 – 9 µm 
 Penetration depth determined from absorption coefficient
 Hole diffusion length ~ 150 nm, electron diffusion length > 5 μm

λ = 300 nm

λ = 300 nm

λ = 400 nm

λ = 400 nm

Supplementary Information



Supplementary Information

Stability test, measuring the change in photocurrent under the action of UV light (chopped 365
nm LED, ~30 mW.cm-2) when held at 1.23 VRHE in 0.5 M H2SO4 (pH = 0.56) for a flat sample (F
~500 nm) and a sample with nano-needles (F ~300 nm, NN ~4.6 µm). Samples were irradiated at
the semiconductor-electrolyte interface. The stability test was conducted over a 4 hour period,
with half hour segments shown from (a) 0 – 0.5 hrs and (b) 3.5 – 4 hrs.



Supplementary Information

Faradaic efficiency measurements of water oxidation to di-oxygen for sample F ~300 nm, NN
~4.6 µm. The sample was held at 1.23 VRHE in 0.5 M H2SO4 (pH = 0.56) in the presence of a UV
light source (365 nm LED, ~30 mW.cm-2). The photocurrent was used to measure the amount of
O2 that would be formed if water oxidation was 100 % Faradaic. A Clarke-type oxygen electrode
was used to measure the actual amount of O2 released into the headspace of the cell.



• Photoelectrochemistry and incident photon-to-current efficiency (IPCE)
 Examined in a 3-electrode photoelectrochemical cell 

(0.5 M H2SO4, pH ~1) or 0.1 M phosphate buffer, pH ~7)
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