

DEVELOPING UPSCALABLE ROUTES TO WATER SPLITTING DEVICES USING CHEMICAL VAPOUR DEPOSITION

Dr. Andreas Kafizas – Imperial College London EUROCVD 22 Baltic ALD 16 – Luxembourg, 2019

Imperial College London

Outline

- The need for solar water splitting
- Why metal oxides are a good choice
- Our CVD process
- Metal oxide heterostructures for solar water splitting: WO₃/ BiVO₄
 - Synthesis
 - Characterisation
 - Water splitting performance
- Conclusions
- Acknowledgements

The CO₂ problem

- CO₂ emissions from fossil fuels is the primary cause of Global Warming
- Current CO₂ levels in the atmosphere are the highest they have been for more than five million years
- The EU has set the target of cutting its emissions by at least 80% compared to 1990 levels to prevent Global Warming

Imperial College London

Solar water splitting

- Sunlight is our largest energy source
- Although solar cells can generate electricity, they have limitations
- Photosynthesis is nature's example of how solar energy can be stored in chemical bonds, and has inspired artificial strategies
- The most promising approach is to split water using semiconductors to produce H₂; which is a versatile fuel

D. Gust, MRS Bulletin, 2008

Metal oxide semiconductors

A semiconductor can split water when photo-excited if:

Chemical vapour deposition (CVD)

- All reactions were carried out at atmospheric pressure using a horizontal flow, cold-wall reactor
- The precursors, used to form WO₃ and BiVO₄, were dissolved in a volatile solvent and transported into the reactor as an aerosol

WO₃: synthesis

		Nano-needles (μm)				
		0	2.3	3.1	4.6	6.2
Flat (nm)	0	-				
	200					
	300					
	500					
	800		-	-	-	-

SEM

SEM

XRD

- All samples adopted the WO₃ monoclinic crystal structure
- Nanoneedles were highly oriented in the (002) crystal plane
- Thicker flat films showed similar preferred orientation to nanoneedles, but adopted a dense, flat nanostructure

- UV-visible absorption spectroscopy
 - Bandgap decreases with an increase in film thickness or nanoneedle length
 - May be physically related to changes in preferred orientation

WO₃: water splitting function

- Photoelectrochemistry and incident photon-to-current efficiency (IPCE)
 - Examined in a 3-electrode photoelectrochemical cell (0.5 M H₂SO₄, pH ~1)
 - Longer nanoneedles show stronger visible light activity

WO₃: water splitting function

- Predicting solar efficiency using our IPCEs
 - IPCEs multiplied by the solar spectrum to predict photocurrent
 - Optimum activity observed at F ~300 nm, NN ~4.6 μm

WO₃/ BiVO₄: synthesis

- BiVO₄ grown using an aerosol-assisted CVD method using a solution of VO(acac)₂ (5.3 mM) and Bi(Ph)₃ (5.3 mM) in an acetone: methanol (3:1) mixture
- Range of BiVO₄ thickness examined individually, and coated onto our best performing WO₃ sample (F ~300 nm, NN ~4.6 μm)

WO₃/ BiVO₄: characterisation

- XRD showed the formation of the monoclinic Scheelite BiVO₄ structure on monoclinic WO₃
- SEM images reveal the conformal coating of WO₃ nanorods with BiVO₄

WO₃/ BiVO₄: water splitting activity

- Incident photon-to-current efficiency (IPCE)
 - Examined in a 3-electrode photoelectrochemical cell at 1.23 V_{RHE} (0.5 M H_2SO_4 , pH \sim 1) or 0.1 M phosphate buffer, pH \sim 7)

WO₃/ BiVO₄: computational modelling

- Band alignment at the interface differs from bulk measurements
- Strong hybridisation of common oxygen anion causes a flat valence band

WO₃/ BiVO₄: charge carrier dynamics

Transient absorption spectroscopy (TAS)

WO₃/ BiVO₄: charge carrier dynamics

- Transient absorption spectroscopy (TAS)
- WO₃/ BiVO₄ heterojunction shows a higher hole signal at early timescales, due to enhanced charge carrier separation

Kafizas *et al.*, *Chem. Sci., 2019, 10, 2643–2652*

Conclusions

- Renewable H₂ fuel can be produced using sunlight, and used as a medium for storing energy, heating or transport fuel
- Inorganic materials show the highest efficiencies for producing
 H₂ fuel using sunlight
- WO₃/BiVO₄
 - Nanostructured WO₃ was grown by CVD and optimised
 - Forming a heterojunction with BiVO₄ results in a 3 fold improvement in water splitting activity
- My research focuses on improving the economic viability of producing water splitting devices using CVD

Acknowledgements

Research Group

Ms. Shababa Selim

Mr. Benjamin Moss

Mr. Brian Tam

Ms. Louise McGrath

Ms. Yunuo Li

Ms. Francesca Pinto

Collaborators

Prof. James Durrant (ICL) Prof. Ivan Parkin (UCL) Dr. Chris Blackman (UCL) Prof. Andrew Mills (QUB)

Funding

Imperial College London

- Why are nanoneedle structures better than flat?
 - Flat samples between 200 800 nm in thickness and nanoneedles between 1 9 μm
 - Penetration depth determined from absorption coefficient
 - Hole diffusion length ~ 150 nm, electron diffusion length > 5 μm

Imperial College London

Supplementary Information

Stability test, measuring the change in photocurrent under the action of UV light (chopped 365 nm LED, ~30 mW.cm⁻²) when held at 1.23 V_{RHE} in 0.5 M H_2SO_4 (pH = 0.56) for a flat sample (F ~500 nm) and a sample with nano-needles (F ~300 nm, NN ~4.6 μ m). Samples were irradiated at the semiconductor-electrolyte interface. The stability test was conducted over a 4 hour period, with half hour segments shown from (a) 0 – 0.5 hrs and (b) 3.5 – 4 hrs.

Faradaic efficiency measurements of water oxidation to di-oxygen for sample F \sim 300 nm, NN \sim 4.6 µm. The sample was held at 1.23 V_{RHE} in 0.5 M H₂SO₄ (pH = 0.56) in the presence of a UV light source (365 nm LED, \sim 30 mW.cm⁻²). The photocurrent was used to measure the amount of O2 that would be formed if water oxidation was 100 % Faradaic. A Clarke-type oxygen electrode was used to measure the actual amount of O₂ released into the headspace of the cell.

- Photoelectrochemistry and incident photon-to-current efficiency (IPCE)
 - Examined in a 3-electrode photoelectrochemical cell
 (0.5 M H₂SO₄, pH ~1) or 0.1 M phosphate buffer, pH ~7)

