

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

NANOLAMINATES AND MULTILAYERS

- Enables tailoring the electrical, mechanical, or optical properties of the layers
 - Multilayers and mixtures of Nb₂O₅ SiO₂ have been investigated e.g. as
 - optical coatings
 - memristors
 - other memory devices
- Be sure to check the related presentation by Dr. Kaupo Kukli after the coffee break!
 - 16.00 Atomic layer deposition of metal oxide nanolaminates exhibiting nonlinear electrical and magnetic polarization with tunable resistivity

NANOLAMINATES AND MULTILAYERS

- Devices often require post deposition treatments such as annealing that might alter the properties
- Understanding what happens during the annealing is important
 - → one way is to perform in situ high temperature XRD and XRR measurements

SOME BACKGROUND

- Short HTXRD+HTXRR history of our lab
 - started with oxidation of Pt, Ir, Rh and Ru films in 2010
 - IrO₂ thin films annealed in O₂, N₂, forming gas or vacuum
 - submitted
 - first superlattice experiments with TiO₂/HoO_x laminate in 2014
 - Kukli et al., Thin Solid Films, 565 (2014) 165

- Heikkilä et al., to be submitted
- solid state reactions between alkali metal carbonates and transition metal oxides
 - Atosuo et al., to be submitted

X-RAY REFLECTIVITY, A QUICK OVERVIEW

- Just a reminder what information XRR gives us:
 - 1. electron density, proportional to the critical angle
 - 2. layer thickness, inversely proportional to the fringe separation
 - 3. layer/interface roughness(es), proportional to the slope and decrease of amplitude
- One of the biggest issues is the huge intensity drop during the measurement
 - especially with our furnace, since additional 20% intensity is lost to furnace windows

X-RAY REFLECTIVITY, A QUICK OVERVIEW

- Multilayers look a bit different
 - 6 x (40 Å $Nb_2O_5 + 40$ Å SiO_2) + 40 Å Nb_2O_5
- Larger intensity peaks are so called Bragg or superlattice (SL) peaks, and caused by the ordered bilayers
- Total thickness is given by the fringe separation of the highest frequency oscillation
 - with equal total thickness, halving the bilayer thickness changes the SL peak locations but keeps the small fringe separation the same

X-RAY REFLECTIVITY, A QUICK OVERVIEW

- Increased roughness decreases the intensity of the SL peaks, starting from higher angles
 - simulated here as 1 Å or 7 Å
 - high sensitivity to changes at the interface, possible to observe interlayer reactions during annealing
- Increasing the roughness gradually from 3 → 7 Å keeps the SL peak intensity higher but widens it

EXPERIMENTAL

- Deposition parameters [1]
 - flow-type hot-wall reactor (F120 by Microchemistry Ltd), deposition at 300 °C
 - precursors transmitted by N₂ flow to the substrates
 - cations from open boats held inside the reactor
 - Si from hexakis(ethylamino)disilane (Si₂(NHEt)₆, AHEAD) held at 65–67 °C
 - Nb from Nb(OC₂H₅)₅ held at 90–93 °C
 - oxidizer was ozone, generated from O_2 with concentration of ~100 g/m³ at the generator
 - cycle times were 0.5 0.5 2.0 0.5 s
 for the Si/Nb precursor pulse purge ozone pulse purge

Good old 90s tools, nothing quite like then

[1] Kukli et al., submitted for publication

EXPERIMENTAL

- Deposition parameters
 - desired layer thicknesses were acquired by adjusting the number of repeated SiO₂ and Nb₂O₅ deposition cycles
 - in the study by Kukli *et al.* [1], films of various different structures were deposited, ranging from completely mixed to Nb₂O₅/SiO₂ doped and to SiO₂–Nb₂O₅ nanolaminates.
 - here we focused mainly on two nanolaminates with bilayers consisting of either thicker Nb₂O₅ or SiO₂, and the amount of cycles was:
 - $-10 \times [50 \times Nb_2O_5 + 150 \times SiO_2] + 50 \times Nb_2O_5$
 - $10 \times [170 \times Nb_2O_5 + 20 \times SiO_2] + 170 \times Nb_2O_5$

[1] Kukli et al., submitted for publication

HTXRD AND HTXRR EQUIPMENT

- PANalytical X'Pert Pro MPD with Anton Paar HTK1200N furnace for HTXRD/HTXRR
 - all high temperature measurements in air
- HTXRD experiments using parallel beam with fixed 1° incident angle
 - usually from RT to 975 °C with 50 °C intervals, ~30 min for each measurement
- HTXRR is much more sensitive for accurate sample calibration
 - with our current system, omega offset and correct height are adjusted by user at each temperature with the exception of isothermal measurements
 - some minutes for aligning + ~11 min measurement at each T

AS DEPOSITED SAMPLES

- According to XRD, the as deposited samples are amorphous
- Two XRR examples of laminates are shown on the right
- Fitting is adequate using equal bilayers, proving the quality of the laminate

HTXRD and HTXRR results for $10 \times (5.4 \text{ nm Nb}_2O_5 + 2.0 \text{ nm SiO}_2) + 5.6 \text{ nm Nb}_2O_5$

- Nanolaminate structure remains unchanged until the crystallization of the Nb₂O₅ layer
- Further changes take place at ~900 °C, when Nb_2O_5 crystals grow and film becomes much rougher as seen from the HTXRR
 - abrupt change in Nb₂O₅ thickness and density upon crystallization is seen in the fit results, surface roughness starts to increase as well

HTXRD and HTXRR results for $10 \times (2.1 \text{ nm Nb}_2O_5 + 12.4 \text{ nm SiO}_2) + 2.4 \text{ nm Nb}_2O_5$

- Structure with thicker SiO₂ behaves very differently
 - Nb₂O₅ crystallizes above 875 °C, peak width suggests larger crystallites than the individual layer thickness → layers start to mix?

thickness (nm)

Nb₂O₅ (bilayer)

- the laminate structure intact up to the crystallization, then fast roughness increase
 - SiO₂ thickness starts to decrease immediately after the annealing begins
 - faster above 500 °C when also roughness starts to decrease

COMPARING TO PURE AND MIXED LAYERS

- Pure Nb₂O₅ starts to crystallize above 525 °C, just like the nanolaminate with thicker Nb₂O₅
 - also grain growth at 900 °C for both
- Pure SiO₂ doesn't seem to crystallize within this temperature range
- Mixed layer behaves like the nanolaminate with thicker SiO₂, so Nb₂O₅ crystallization is somehow inhibited at temperatures below ~700 °C

CRYSTALLIZATION IN MORE DETAIL

- Nanolaminates heated to 600 °C, held for 1 h and cooled back to RT
 - GIXRD: nothing observed for the sample 1, weak crystallinity for the sample 2 (probably just SiO₂)
 - in-plane XRD: strong crystallinity for the previous, almost nothing for the latter
 - out of plane XRD: confirms the strong orientation of the sample with thicker Nb₂O₅ in bilayer

CONCLUSIONS

- More detailed analysis possible but requires
 - larger measurements ranges
 - for XRR: improved analysis on roughness, possibility to detect new layers forming during annealing
 - for XRD: improved microstructure/texture analysis
 - shorter measurement times
 - smaller temperature steps, more accurate phase change temperatures, reaction kinetics
 - or more measurements at each temperature (e.g. rocking curves for diffuse scattering studies, better background determination in XRR)
- In practice all those require synchrotron, but even laboratory equipment gives useful results!

CONCLUSIONS

- Combined HTXRD and HTXRR is an efficient tool for analysing the annealing of the nanolaminates
 - might help in interpreting electrical properties as changes in
 - phase composition affects the dielectric constant
 - layer thickness affects the capacitance as well
 - crystallization affects the amount of leakage current

$$C = \frac{k \varepsilon_0 A}{d}$$

- tailoring of the final properties by selecting proper annealing conditions
- possible to monitor solid state reactions and/or interdiffusion between the adjacent layers

ACKNOWLEDGEMENTS

- Big thanks to Ms. Elisa Atosuo for performing a lot of HTXRR measurements
- Dr. Marko Vehkamäki is acknowledged for taking TEM pictures
- The study was partially supported by the Finnish Centre of Excellence in Atomic Layer Deposition (<u>www.aldcoe.fi</u>)

ORCID

mikko.j.heikkila@helsinki.fi

@unreal_mjh